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Abstract This paper presents a comprehensive analysis of the degree statistics in models
for growing networks where new nodes enter one at a time and attach to one earlier node
according to a stochastic rule. The models with uniform attachment, linear attachment (the
Barabási-Albert model), and generalized preferential attachment with initial attractiveness
are successively considered. The main emphasis is on finite-size (i.e., finite-time) effects,
which are shown to exhibit different behaviors in three regimes of the size-degree plane:
stationary, finite-size scaling, large deviations.

Keywords Networks · Random processes · Growth models · Nonequilibrium systems ·
Complex systems

1 Introduction

Complex networks have attracted much attention over the last decades. They provide a nat-
ural setting to describe many phenomena in nature and society [1–5]. One of the salient fea-
tures of most networks, either natural and artificial, is their scalefreeness. This term refers
to the broad degree distribution exhibited by these networks. The probability that a node has
degree k (i.e., is connected to exactly k other nodes) is commonly observed to fall off as a
power law:

fk ∼ k−γ . (1.1)
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This power-law behavior, which holds in the limit of an infinitely large network, will be
referred to hereafter as ‘stationary’. The exponent usually obeys γ > 2, so that the mean de-
gree of the infinite network is finite. Growing networks with a preferential attachment rule,
such as the well-known Barabási-Albert (BA) model [6, 7], have received a considerable in-
terest, as they provide a natural explanation for the observed scalefreeness. The observation
that preferential attachment generates a power-law degree distribution actually dates back to
much earlier works [8, 9].

Scalefree networks, being chiefly characterized by the exponent γ of their degree distri-
bution, are therefore somewhat similar to equilibrium systems at their critical point. As a
consequence, finite-size (i.e., finite-time) effects can be expected to yield important correc-
tions to the asymptotic or stationary form (1.1) of the degree distribution. These effects are
one of the possible causes of the cutoff phenomenon which is often observed in the degree
distribution of real networks [10]. More precisely, the largest degree k�(n) of a scalefree
network at time n can be estimated by means of the following argument of extreme value
statistics: it is such that the stationary probability of having k ≥ k�(n) is of order 1/n. The
largest degree thus grows as a power law [10, 11]:

k�(n) ∼ nν, ν = 1

γ − 1
. (1.2)

This growth law is always subextensive, because one has γ > 2, so that ν < 1. The cases 2 <

γ < 3 (i.e., 1/2 < ν < 1) and γ > 3 (i.e., 0 < ν < 1/2) however correspond to qualitative
differences, especially in the topology and in the various dimensions of the networks [12].

The goal of this article is to provide a systematic analysis of the degree statistics of
growing network models at a large but finite time n. Both the age-resolved distribution
fk(n, i) of the degree of node i at a later time n and the distribution fk(n) of an unspecified
node at time n will be considered throughout. Several works have already been devoted to
this problem, both for growing networks with preferential attachment [11, 13–18] and for
related models of random graphs and other structures [19, 20]. The present work aims at
being systematic in the following three respects:

Models This work is focused onto growing network models where a new node enters at
each time step, so that nodes can be labeled by their birth date n, i.e., the time they enter the
network. Node n attaches to a single earlier node (i = 1, . . . , n − 1) with probability pn,i .
The attachment probabilities and the initial configuration entirely define the model. The
network thus obtained has the topology of a tree. The degrees ki(n) of the nodes at time n

obey the sum rule

n∑

i=1

ki(n) = 2L(n), (1.3)

where L(n) is the number of links of the network at time n.
We will successively consider the following models:

– Uniform attachment (UA) (Sect. 2). The attachment probability is independent of the
node, i.e., uniform over the network. This model is not scalefree. Its analysis serves as a
warming up for that of the subsequent models.

– Barabási-Albert (BA) model (Sect. 3). The attachment probability is proportional to the
degree ki(n) of the earlier node. This well-known model [6, 7] is scalefree, with exponents
γ = 3 and ν = 1/2.
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Table 1 Various characteristics of the network for both initial conditions. The listed results hold irrespective
of the attachment rule

Initial condition Case A Case B

Topology tree rooted tree

Number of links at time n L(A)(n) = n − 1 L(B)(n) = n − 1/2

Mean degree at time n 〈k(A)(n)〉 = 2 − 2/n 〈k(B)(n)〉 = 2 − 1/n

Degrees at time 1 k
(A)
1 (1) = 0 k

(B)
1 (1) = 1

and generating polynomials F
(A)
1 (x) = 1 F

(B)
1 (x) = x

Degrees at time 2 k
(A)
1 (2) = k

(A)
2 (2) = 1 k

(B)
1 (2) = 2, k

(B)
2 (2) = 1

and generating polynomials F
(A)
2 (x) = x F

(B)
2 (x) = 1

2 x(x + 1)

– General preferential attachment (GPA) (Sect. 4). The attachment probability is propor-
tional to the sum ki(n) + c of the degree of the earlier node and of an additive constant
c > −1. This parameter, representing the initial attractiveness of a node [11], is relevant
as it yields the continuously varying exponents γ = c + 3 and ν = 1/(c + 2). The BA and
UA model are respectively recovered when c = 0 and c → ∞.

Regimes For each model, the following three regimes will be considered:

– Stationary regime (k � k�(n)). The degree distribution is essentially given by its station-
ary form (1.1), to be henceforth denoted by fk,stat, in order to emphasize its belonging to
the stationary regime.

– Finite-size scaling regime (k ∼ k�(n)). In the scalefree cases, the degree distribution obeys
a multiplicative finite-size scaling law of the form

fk(n) ≈ fk,statΦ

(
k

k�(n)

)
. (1.4)

– Large-deviation regime (k�(n) � k ∼ n). The degree distribution is usually exponentially
small in n.

Initial conditions We will consider the following two initial conditions:

– Case A. The first node appears at time n = 1 with degree k1(1) = 0. This prescription is
natural because the first node initially has no connection. All subsequent nodes appear
with degree kn(n) = 1. In particular, at time n = 2 the second node connects to the first
one, so that k1(2) = k2(2) = 1. The configuration thus obtained is the dimer configuration
used e.g. in [15, 16]. At time n, the network has L(n) = n − 1 links. It has the topology
of a tree.

– Case B. The first node now appears at time n = 1 with degree k1(1) = 1. This formally
amounts to saying that this node is connected to a root, which does not belong to the
network. It is natural to associate half a link to this fictitious connection. At time n = 2
the second node connects to the first one, so that k1(2) = 2 and k2(2) = 1. At time n, the
network has L(n) = n − 1/2 links. It has the topology of a rooted tree.

Table 1 summarizes various characteristics of the network for both initial conditions,
whereas Fig. 1 illustrates the first three steps of the network construction. The upper panel
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Fig. 1 First three steps of the construction of the network (upper panel) and corresponding interacting par-
ticle representation (lower panel) for both initial conditions

shows the networks with their nodes and links. The lower panel shows the corresponding
representation as an interacting particle system, where each node is viewed as a site occu-
pied by a number of particles equal to its degree. The total number of particles in the system
is therefore 2L(n). The information about the topology of the network, and especially about
the genealogy of the nodes, is lost in the interacting particle representation, but this infor-
mation will not be used in the present study which is focused on the statistics of degrees.
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2 The Uniform Attachment (UA) Model

The uniform attachment (UA) model is the simplest of all: the attachment probability is
chosen to be uniform over all existing nodes. This section is devoted to an analytical study
of the distribution of the degree of a fixed node and of an unspecified node, exactly taking
into account fluctuations, finite-time effects, and the influence of the initial condition.

2.1 Degree Statistics of a Fixed Node

We start with the study of the distribution of the degree ki(n) of node i at time n. The
node appearing at time n ≥ 2 links to any of the n − 1 earlier nodes (i = 1, . . . , n − 1) with
uniform probability

pn,i = 1

n − 1
. (2.1)

If we define the degree increment of node i at a later time j > i as

Ii(j) = ki(j) − ki(j − 1) =
{

1 with probability pj,i ,

0 else,
(2.2)

the degree ki(n) of node i at a later time n is given by

ki(n) = ki(i) +
n∑

j=i+1

Ii(j), (2.3)

with ki(i) = 1, except for i = 1 in Case A, where k1(1) = 0 (see Table 1).
The mean degree 〈ki(n)〉 therefore reads (i ≥ 2)

〈ki(n)〉 = 1 +
n∑

j=i+1

1

j − 1
= Hn−1 − Hi−1 + 1 ≈ ln

n

i
+ 1, (2.4)

where the harmonic numbers Hn are defined in (2.20).
The distribution fk(n, i) = Prob{ki(n) = k} can be encoded in the generating polynomial

Fn,i(x) = 〈
xki (n)

〉 =
n∑

k=1

fk(n, i)xk. (2.5)

As a consequence of (2.3), we have

Fn,i(x) = xki (i)

n∏

j=i+1

〈
xIi (j)

〉
, (2.6)

where the characteristic function of the degree increment Ii(j) assumes the simple form

〈
xIi (j)

〉 = 1 + (x − 1)pj,i = x + j − 2

j − 1
, (2.7)

irrespective of i. We thus get (i ≥ 2)

Fn,i(x) = x(i − 1)!�(x + n − 1)

(n − 1)!�(x + i − 1)
, (2.8)
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whereas only Fn,1(x) depends on the initial condition according to

F
(A)

n,1 (x) = �(x + n − 1)

(n − 1)!�(x)
, F

(B)

n,1 (x) = x�(x + n − 1)

(n − 1)!�(x)
. (2.9)

Throughout the following, the superscripts (A) and (B) mark a result which holds for a
prescribed initial condition (Case A or Case B).

The product form (2.6) implies that the generating polynomials of node i at times n and
n + 1 obey the recursion

Fn+1,i (x) = 〈
xIi (n+1)

〉
Fn,i(x) = x + n − 1

n
Fn,i(x). (2.10)

The probabilities fk(n, i) therefore obey the recursion

fk(n + 1, i) = 1

n
fk−1(n, i) +

(
1 − 1

n

)
fk(n, i), (2.11)

with initial conditions given in Table 1, i.e.,

fk(i, i) = δk,1 (i ≥ 2), f
(A)
k (1,1) = δk,0, f

(B)
k (1,1) = δk,1. (2.12)

The master equations (2.11) can be directly written down by means of a simple reasoning.
They provide an alternative way of describing the evolution of the degree distribution of
individual nodes.

The degree distribution encoded in (2.8) has the following characteristics. The degree of
node i at time n ranges from the minimal value 1 to the maximal value n + 1 − i. These
extremal values occur with probabilities

f1(n, i) = i − 1

n − 1
, fn+1−i (n, i) = (i − 1)!

(n − 1)! . (2.13)

The mean and the variance of the degree can be obtained by expanding the result (2.8)
around x = 1, using

〈xK〉 = 1 + (x − 1)〈K〉 + 1

2
(x − 1)2 〈K2 − K〉︸ ︷︷ ︸

varK+〈K〉2−〈K〉

+ · · · , (2.14)

where K is any random variable taking positive integer values. We thus get

〈ki(n)〉 = Hn−1 − Hi−1 + 1,

var ki(n) = Hn−1 − H
(2)

n−1 − Hi−1 + H
(2)

i−1,
(2.15)

where the harmonic numbers Hn and H(2)
n are defined in (2.20). The above results hold

irrespective of the initial condition. The first one coincides with (2.4).
In the scaling regime where both times i and n are large and comparable, introducing the

time ratio

z = n

i
≥ 1, (2.16)
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the expressions (2.15) yield

〈ki(n)〉 ≈ ln z + 1, var ki(n) ≈ ln z. (2.17)

In deriving the above results, we have used the asymptotic behavior of the digamma
function Ψ (x) = Γ ′(x)/Γ (x) and of the trigamma function Ψ ′(x) as x → ∞:

Ψ (x) = lnx − 1

2x
+ · · · , Ψ ′(x) = 1

x
+ 1

2x2
+ · · · , (2.18)

as well as their values at integers:

Ψ (n) = Hn−1 − γE, Ψ ′(n) = π2

6
− H

(2)

n−1, (2.19)

where

Hn =
n∑

i=1

1

i
, H (2)

n =
n∑

i=1

1

i2
(2.20)

are the harmonic numbers of the first and second kind, and γE is Euler’s constant.
The entire degree distribution can be characterized in the scaling regime. Equation (2.8)

indeed yields

Fn,i(x) ≈ xe(x−1) ln z, (2.21)

irrespective of the initial condition. We recognize the generating function of a Poissonian
distribution with parameter λ = ln z, up to a shift by one unit. We thus obtain [15, 21]

fk(n, i) ≈ (ln z)k−1

z(k − 1)! . (2.22)

2.2 Degree Statistics of the Whole Network

We now turn to the degree distribution of the whole network at time n, fk(n) = Prob{k(n) =
k}, where k(n) stands for the degree of an unspecified node. We have

fk(n) = 1

n

n∑

i=1

fk(n, i). (2.23)

The corresponding generating polynomials,

Fn(x) = 〈
xk(n)

〉 =
n∑

k=1

fk(n)xk = 1

n

n∑

i=1

Fn,i(x), (2.24)

obey the recursion

(n + 1)Fn+1(x) = (x + n − 1)Fn(x) + x, (2.25)

or equivalently

(n + 1)fk(n + 1) = fk−1(n) + (n − 1)fk(n) + δk,1, (2.26)



1124 C. Godrèche et al.

with initial conditions given in Table 1, i.e.,

f
(A)
k (1) = δk,0, f

(B)
k (1) = δk,1. (2.27)

The recursion (2.25) has a non-polynomial solution, independent of n,

Fstat(x) = x

2 − x
, (2.28)

describing the stationary degree distribution on an infinitely large network:

fk,stat = 1

2k
(k ≥ 1). (2.29)

The solution of (2.25) reads

F (A)
n (x) = x

2 − x
+ 2(1 − x)

2 − x

Γ (x + n − 1)

n!Γ (x)
,

F (B)
n (x) = x

2 − x
+ x(1 − x)

2 − x

Γ (x + n − 1)

n!Γ (x)
.

(2.30)

The polynomials F (A)
n (x) and F (B)

n (x) have respective degrees n − 1 and n. The first of
them which are not listed in Table 1 read

F
(A)

3 (x) = 1

3
x(x + 2), F

(B)

3 (x) = 1

6
x(x2 + 2x + 3),

F
(A)

4 (x) = 1

12
x(x2 + 4x + 7), F

(B)

4 (x) = 1

24
x(x + 3)(x2 + x + 4).

(2.31)

The degree k(n) at time n ranges from the minimal value 1 to the maximal value n − 1
(Case A) or n (Case B). These extremal values occur with the following probabilities (n ≥ 2)

f
(A)

1 (n) = 1

2
+ 1

n(n − 1)
, f

(B)

1 (n) = 1

2
,

f
(A)

n−1(n) = 2

n! , f (B)
n (n) = 1

n! .
(2.32)

We now turn to the finite-size scaling behavior of the degree distribution when both
k and n are large. As anticipated in the Introduction, it is to be expected that the proba-
bilities fk(n) are close to their limits (fk(n) ≈ fk,stat) for n large at fixed degree k, and
more generally in the stationary regime where k is much smaller than some characteris-
tic crossover degree k�(n). Conversely, the probabilities fk(n) are expected to be negligible
(fk(n) � fk,stat) for k large enough at fixed time n, and more generally in the large-deviation
regime where k�(n) � k ∼ n. The crossover scale k�(n) can be estimated as k�(n) ≈ 〈k1(n)〉
(see (2.4)). Nodes with highest degrees are indeed typically expected to be the oldest ones.
An alternative route consists in using the argument of extreme value statistics alluded to in
the Introduction: the largest degree k� at time n is such that the stationary probability of
having k ≥ k� is of order 1/n. Both approaches consistently yield

k�(n) ∼ lnn. (2.33)
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Fig. 2 Plot of the ratios Rk(n)

against k/ lnn (see (2.34)), for
the UA model with initial
condition A, at times n = 103

(empty symbols) and n = 106

(full symbols)

Finite-size effects are best revealed by considering the ratios

Rk(n) = fk(n)

fk,stat
= 2kfk(n). (2.34)

These ratios are expected to fall off to zero for k of the order of k�(n) ∼ lnn. Figure 2
shows a plot of the ratios Rk(n) against k/ lnn, for times n = 103 and n = 106 in Case A.
Numerically exact values of the fk(n) are obtained by iterating (2.26). A steeper and steeper
crossover is clearly observed.

In order to get some quantitative information on the observed crossover, it is advan-
tageous to introduce the differences dk(n) = Rk−1(n) − Rk(n) for k ≥ 2, completed by
d1(n) = 1 − R1(n), i.e., R0(n) = 1. Although the dk(n) are not positive, most of them are,
and they sum up to unity, so that it is tempting to think of them as a narrow probability
distribution living in the crossover region. The generating function of the dk(n) reads

Dn(x) =
∑

k≥1

dk(n)xk = (x − 1)Fn(2x) + x. (2.35)

The above picture suggests to define the crossover scale as the first moment

k� = μ(n) =
∑

k≥1

kdk(n) = D′
n(1), (2.36)

and the squared width of the crossover front as the variance

σ 2(n) =
∑

k≥1

k2dk(n) − μ(n)2 = D′′
n(1) + μ(n) − μ(n)2. (2.37)

Equations (2.30), (2.35) yield

μ(A)(n) = 2Hn ≈ 2(lnn + γE), μ(B)(n) = 2Hn + 1 ≈ 2(lnn + γE) + 1, (2.38)

and

σ 2(n) = 2Hn − 4H(2)
n ≈ 2(lnn + γE − π2/3), (2.39)
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Fig. 3 Plot of the non-trivial
zeros of the polynomials Fn(x)

for the UA model, in the complex
plane of the rescaled variable
ξ = x/n. Symbols: zeros for
n = 50 in Case A (empty
symbols) and Case B (full
symbols). Line: limiting curve
with (2.41)

the latter result being independent of the initial condition.
The crossover scale is thus k� ≈ 2 lnn, whereas the width of the crossover front grows as

σ(n) ≈ (2 lnn)1/2. These predictions are in agreement with the observations which can be
made on Fig. 2, namely that the crossover takes place around k/ lnn = 2, and that it becomes
steeper at larger times, as its relative width falls off, albeit very slowly, as (lnn)−1/2.

Another illustration of finite-size effects is provided by the complex zeros of the polyno-
mials Fn(x). The location of these zeros indeed shows how fast the degree distribution of
finite networks, encoded in the polynomials Fn(x), converges to the stationary distribution,
encoded in the function Fstat(x). For n ≥ 2, F (A)

n (x) and F (B)
n (x) have one trivial zero at

x = 0, and respectively n − 2 and n − 1 non-trivial ones. The explicit expressions (2.30)
allow one to find the asymptotic locus of the zeros as follows. The most rapidly varying
part of these results is the rightmost ratio, so that the zeros are asymptotically located on the
curve with equation |Γ (x + n − 1)/(n!Γ (x))| = 1. Setting

x = nξ, (2.40)

and using Stirling’s formula, we can recast the above estimate as

Re [(1 + ξ) ln(1 + ξ) − ξ ln ξ ] = 0. (2.41)

The non-trivial zeros of the polynomials Fn(x) are thus predicted to escape to infinity lin-
early with time n. Once rescaled by n according to (2.40), they accumulate onto a well-
defined limiting curve in the complex ξ -plane. This curve, with equation (2.41), has the
shape of a lens connecting the points −1 and 0. Figure 3 illustrates this result with data at
time n = 50 for both initial conditions. The polynomials Fn(x) converge to the stationary
function Fstat(x) whenever the complex ratio ξ = x/n lies within the lens. Otherwise they
diverge exponentially with n.

A related issue concerns the behavior of the probability fk(n) of having a very large
degree, of order k ∼ n, much larger than k�(n) ∼ lnn. Considering Case A for definiteness,
the expression (2.30) leads to the exact contour-integral representation

f
(A)
k (n) =

∮
dx

2π ixk+1

(
x

2 − x
+ 2(1 − x)

2 − x

Γ (x + n − 1)

n!Γ (x)

)
. (2.42)
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The presence of gamma functions suggests to look for a saddle point xs proportional to n.
Setting ζ = k/n, we indeed find xs = n/v, where ζ and v are related through

ζ = ln(v + 1)

v
. (2.43)

We thus obtain the following large-deviation estimate

fk(n) ∼ exp
(
−n

(
ζ lnn + S(ζ )

))
, (2.44)

where the exponent has a usual contribution in n and a less usual one in n lnn. The term
linear in n involves a large-deviation function S(ζ ), which is obtained in the following form,
parametrized by v:

S(ζ ) = 1

v

(
v lnv − lnv ln(v + 1) − (v + 1) ln(v + 1)

)
. (2.45)

This function decreases from S(0) = 0 to S(1) = −1. The resulting behavior at ζ = 1, i.e.,
exp(−n(lnn − 1)), is in agreement with the inverse factorial expressions (2.32).

3 Linear Preferential Attachment: The Barabási-Albert (BA) Model

The Barabási-Albert (BA) model is the simplest of the models with preferential attachment:
each new node connects to earlier nodes with a probability proportional to their degrees.
The probability that node n connects to an earlier node i thus reads

pn,i = ki(n − 1)

Z(n − 1)
, (3.1)

where ki(n − 1) is the degree of node i at time n − 1, i.e., before node n enters the network.
The partition function in the denominator,

Z(n) =
n∑

i=1

ki(n) = 2L(n) (3.2)

(see (1.3)), ensures that the attachment probabilities add up to unity.
In the following we analyze the BA model along the lines of the previous section, keeping

consistent notations as much as possible. The dependence of the attachment probability pn,i

on the degree ki(n − 1) however makes the problem more difficult than the previous one of
a uniform attachment.

3.1 Degree Statistics of a Fixed Node

Let us again begin with the distribution fk(n, i) = Prob{ki(n) = k} of the degree of node i

at time n.
A first estimate of the degree ki(n) is provided by the following recursion relation for the

mean degree 〈ki(n)〉, which is a consequence of (2.2):

〈ki(n)〉 = 〈ki(n − 1)〉 + 〈pn,i〉 =
(

1 + 1

Z(n − 1)

)
〈ki(n − 1)〉. (3.3)
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In the scaling regime where both i and n are large, using the expressions of the partition
function given in Table 1, i.e.,

Z(A)(n) = 2n − 2, Z(B)(n) = 2n − 1, (3.4)

the above relation becomes the differential equation

∂〈ki(n)〉
∂n

≈ 〈ki(n)〉
2n

, (3.5)

which yields

〈ki(n)〉 ≈
(

n

i

)1/2

. (3.6)

The generating polynomials Fn,i(x) and Fn+1,i (x) which encode the distribution of the
degree of node i at successive times n and n + 1 obey the recursion formula:

Fn+1,i (x) = 〈
xki (n+1)

〉 = 〈
xIi (n+1)xki (n)

〉

= 〈
(1 + (x − 1)pn+1,i )x

ki (n)
〉

=
〈(

1 + x − 1

Z(n)
ki(n)

)
xki (n)

〉
, (3.7)

i.e.,

Fn+1,i (x) = Fn,i(x) + x(x − 1)

Z(n)

dFn,i(x)

dx
, (3.8)

where Z(n) is given by (3.4). The probabilities fk(n, i) themselves therefore obey the re-
cursion

fk(n + 1, i) = k − 1

Z(n)
fk−1(n, i) +

(
1 − k

Z(n)

)
fk(n, i), (3.9)

with initial conditions (2.12). The initial condition for Case A should be taken at time n = 2,
in order to avoid indeterminate expressions, as Z(A)(1) = 0.

In order to solve the recursion (3.8), we perform the rational change of variable from x

to u such that

u = x

1 − x
, x = u

u + 1
, x(x − 1)

d

dx
= −u

d

du
. (3.10)

Introducing the notation F̂n,i (u) = Fn,i(x), the recursion (3.8) reads

F̂n+1,i (u) = F̂n,i (u) − u

Z(n)

dF̂n,i (u)

du
. (3.11)

It is then advantageous to introduce the Mellin transform Mn,i(s) of F̂n,i (u), defined as

Mn,i(s) =
∫ ∞

0
F̂n,i (u)u−s−1 du. (3.12)

The inverse transform reads

F̂n,i (u) =
∫

C

ds

2π i
Mn,i(s)u

s, (3.13)
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where C is a vertical contour in the complex s-plane whose position will be defined in a
while. The virtue of the Mellin transformation is that the recursion (3.11) simplifies to

Mn+1,i (s) =
(

1 − s

Z(n)

)
Mn,i(s), (3.14)

with initial condition Mi,i(s) = X0(s) for i ≥ 2, with

X0(s) =
∫ ∞

0
x(u)u−s−1 du =

∫ 1

0
x−s(1 − x)s−1 dx = π

sinπs
(3.15)

for 0 < Re s < 1. Hereafter the contour C is assumed to be in that strip. We thus get (i ≥ 2)

M
(A)
n,i (s) = Γ (n − s

2 − 1)Γ (i − 1)

Γ (i − s
2 − 1)Γ (n − 1)

X0(s),

M
(B)
n,i (s) = Γ (n − s

2 − 1
2 )Γ (i − 1

2 )

Γ (i − s
2 − 1

2 )Γ (n − 1
2 )

X0(s).

(3.16)

These product formulas in the Mellin variable s are reminiscent of (2.8).
The mean and the variance of the degree of node i at time n can be extracted from these

results as follows. The identity (2.14) yields

F̂n,i (u) = 1 − 〈ki(n)〉
u

+ 〈ki(n)2〉 + 〈ki(n)〉
2u2

+ · · · (3.17)

as u → +∞. Furthermore the coefficients of 1/u and 1/u2 are respectively the residues of
Mn,i(s) at s = −1 and s = −2. We thus obtain

〈
k

(A)
i (n)

〉 = Γ (n − 1
2 )Γ (i − 1)

Γ (i − 1
2 )Γ (n − 1)

,
〈
k

(B)
i (n)

〉 = Γ (n)Γ (i − 1
2 )

Γ (i)Γ (n − 1
2 )

(3.18)

and

vark(A)
i (n) = 2

n − 1

i − 1
− 〈k(A)

i (n)〉2 − 〈k(A)
i (n)〉,

vark(B)
i (n) = 2

2n − 1

2i − 1
− 〈k(B)

i (n)〉2 − 〈k(B)
i (n)〉.

(3.19)

In the scaling regime where both times i and n are large and comparable, introducing the
time ratio z = n/i (see (2.16)), the above results yield

〈ki(n)〉 ≈ z1/2, var ki(n) ≈ z1/2(z1/2 − 1), (3.20)

irrespective of the initial condition. The mean degree is in agreement with the estimate (3.6).
The entire degree distribution can actually be derived in the scaling regime. Equation (3.16)
indeed yields

Mn,i(s) ≈ z−s/2 π

sinπs
. (3.21)

We thus obtain

Fn,i(x) ≈ x

x + z1/2(1 − x)
(3.22)
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and finally

fk(n, i) ≈ z−1/2
(
1 − z−1/2

)k−1
. (3.23)

The degree distribution is therefore found to be asymptotically geometric, irrespective of the
initial condition [15, 21].

3.2 Degree Statistics of the Whole Network

We now turn to the degree distribution fk(n) = Prob{k(n) = k}, where k(n) stands for the
degree of an unspecified node.

The generating polynomials Fn(x) obey the recursion

(n + 1)Fn+1(x) = nFn(x) + n
x(x − 1)

Z(n)

dFn(x)

dx
+ x, (3.24)

where Z(n) is again given by (3.4), and with initial conditions given in Table 1. The proba-
bilities fk(n) themselves obey the recursion

(n + 1)fk(n + 1) = k − 1

Z(n)
nfk−1(n) +

(
1 − k

Z(n)

)
nfk(n) + δk,1. (3.25)

The first generating polynomials which depend on the attachment rule read

F
(A)

3 (x) = 1

3
x(x + 2), F

(B)

3 (x) = 1

9
x(2x2 + 2x + 5),

F
(A)

4 (x) = 1

8
x(x2 + 2x + 5), F

(B)

4 (x) = 1

60
x(6x3 + 8x2 + 11x + 35).

(3.26)

The stationary degree distribution fk,stat can be determined as the solution of (3.25) which
becomes independent of n for large n. We thus get

(k + 2)fk,stat = (k − 1)fk−1,stat + 2δk,1, (3.27)

hence [11, 14, 15]

fk,stat = 4

k(k + 1)(k + 2)
. (3.28)

An alternative approach consists in looking for the asymptotic generating function Fstat(x)

as the solution of (3.24) which becomes independent of n for large n. We thus obtain the
differential equation

x(1 − x)F ′
stat(x) + 2Fstat(x) = 2x, (3.29)

which has for solution

Fstat(x) = 3 − 2

x
− 2(1 − x)2

x2
ln(1 − x). (3.30)

Expanding this result as a power series in x allows one to recover (3.28).
The recursion (3.24) for the generating polynomials Fn(x) can be solved along the lines

of the above solution of the recursion (3.8). The Mellin transforms Mn(s) of the functions
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F̂n(u) = Fn(x) obey the recursion

(n + 1)Mn+1(s) =
(

1 − s

Z(n)

)
nMn(s) + X0(s), (3.31)

with initial condition M
(A)

2 (s) = M
(B)

1 (s) = X0(s). Equation (3.31) has a special solution

Mn(s) = Z(n)X0(s)

(s + 2)n
, (3.32)

whereas the general solution of the homogeneous equation shares the n-dependence of the
expressions (3.16). We thus obtain

M(A)
n (s) = 2X0(s)

(s + 2)n

(
n − 1 + (s + 1)

Γ (n − s
2 − 1)

Γ (1 − s
2 )Γ (n − 1)

)
,

M(B)
n (s) = X0(s)

(s + 2)n

(
2n − 1 + (s + 1)

√
πΓ (n − s

2 − 1
2 )

Γ ( 1
2 − s

2 )Γ (n − 1
2 )

)
.

(3.33)

The common stationary limit of both expressions,

Mstat(s) = 2X0(s)

s + 2
, (3.34)

is proportional to the special solution (3.32). Recalling (3.15), the inverse Mellin transform
of the above result,

F̂stat(u) = 1 − 2

u
+ 2

u2
ln(u + 1), (3.35)

is equivalent to (3.30).
The results (3.33) allow one to investigate, at least in principle, every feature of the degree

distribution fk(n). Let us take the example of the probability f1(n) for a node to have degree
one. The inverse formula (3.13) shows that this probability is equal to minus the residue of
Mn(s) at s = 1. The nature of the subleading corrections to the stationary value f1,stat = 2/3
depends on the initial condition. For Case A we obtain (n ≥ 2)

f
(A)

1 (n) = 2(n − 1)

3n
+ 4Γ (n − 3

2 )

3
√

πnΓ (n − 1)
= 2

3
− 2

3n
+ 4

3
√

πn3/2
+ · · · . (3.36)

More generally, all the probabilities fk(n) exhibit a singular correction in n−3/2. Case B
has the remarkable property that all the probabilities fk(n) are rational functions of time n.
Their expansion at large n therefore only involves integer powers of 1/n. We have e.g.

f
(B)

1 (n) = 2n − 1

3n
= 2

3
− 1

3n
,

f
(B)

2 (n) = n2 − 2n + 3

3n(2n − 3)
= 1

6
− 1

12n
+ 3

8n2
+ · · · .

(3.37)

We now turn to the finite-size scaling behavior of the degree distribution when both k

and n are large. The crossover scale k�(n) can again be estimated either using (3.6) or by the
argument of extreme value statistics. Both approaches consistently yield

k�(n) ∼ n1/2. (3.38)
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We will now show that the degree distribution obeys the multiplicative finite-size scaling
law

fk(n) ≈ fk,statΦ(y), y = k

n1/2
, (3.39)

where the scaling function Φ(y) is non-universal, in the sense that it depends on the initial
condition [16, 17]. The proof of the scaling behavior (3.39) and the determination of the
scaling functions Φ(A)(y) and Φ(B)(y) go as follows. Let us start with Case A. The second
term of the expression (3.33) for M(A)

n (s) scales as a power law for large n:

M
(A)

n,scal(s) ≈ 2(s + 1)X0(s)

(s + 2)Γ
(
1 − s

2

)n−s/2−1. (3.40)

The inverse Mellin transform of the latter formula,

F̂
(A)

n,scal(u) ≈ 1

n

∫

C

ds

2π i

2(s + 1)X0(s)

(s + 2)Γ
(
1 − s

2

)
(
u/n1/2

)s
, (3.41)

describes the scaling behavior of F̂ (A)
n (u) in the regime where u and n are simultaneously

large, with u/n1/2 fixed. Finally, by inserting the above scaling estimate into the contour-
integral representation

f
(A)
k (n) =

∮
dx

2π i

F (A)
n (x)

xk+1
=

∮
du

2π i

F̂ (A)
n (u)(u + 1)k−1

uk+1
, (3.42)

permuting the order of integrals, opening up the u-contour and using

∫

C

du

2π i

(u + 1)k−1

uk−s+1
= Γ (k)

Γ (s)Γ (k − s + 1)
, (3.43)

we obtain after some algebra the scaling form (3.39), with

Φ(A)(y) = 1 + 2√
π

∫

C

ds

2π i

s + 1

s + 2
Γ

(
1 − s

2

)(y

2

)s+2
. (3.44)

Case B can be dealt with along the same lines. We thus get the similar expression

Φ(B)(y) = 1 +
∫

C

ds

2π i

s + 1

s + 2
Γ

(
1 − s

2

)(y

2

)s+2
. (3.45)

The above expressions can be evaluated by closing the contour to the right and summing the
residues at the poles of the gamma functions. We thus get

Φ(A)(y) = 1 + 8√
π

∑

m≥0

(−1)m(m + 1)

(2m + 3)m!
(y

2

)2m+3
,

Φ(B)(y) = 1 +
∑

m≥0

(−1)m(m + 1)(2m + 3)

(m + 2)!
(y

2

)2m+4
,

(3.46)
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Fig. 4 Plot of the ratios
fk(n)/fk,stat against the scaling
variable y = k/n1/2, for the BA
model at time n = 103 (symbols)
for both initial conditions. Full
lines: asymptotic scaling
functions Φ(A)(y) and Φ(B)(y)

i.e., finally

Φ(A)(y) = erfc
(y

2

)
+ y√

π

(
1 + y2

2

)
e−y2/4,

Φ(B)(y) =
(

1 + y2

4
+ y4

8

)
e−y2/4,

(3.47)

where erfc denotes the complementary error function. The above expression for Φ(A) can
be found in [16, 17], whereas that for Φ(B) has been shown in [13] to hold for a slightly
different attachment rule and initial condition.

Figure 4 shows a plot of the ratios fk(n)/fk,stat, against the scaling variable y = k/n1/2,
at time n = 103 for both initial conditions. Exact values for the fk(n) are obtained by iterat-
ing (3.25). The data are well described by the predicted finite-size scaling functions Φ(A)(y)

and Φ(B)(y), shown as full lines.
Both scaling functions share similar qualitative features. They start from the value 1 at

y = 0, increase to a maximum, which is reached for y = 2 in Case A and for y = √
6 in

Case B, and fall off as exp(−y2/4). They however differ at the quantitative level, both at
small and large values of y:

Φ(A)(y) = 1 + y3

3
√

π
+ · · · , Φ(B)(y) = 1 + 3y4

32
+ · · · ,

Φ(A)(y) ≈ y3

2
√

π
e−y2/4, Φ(B)(y) ≈ y4

8
e−y2/4.

(3.48)

Apart from the additive constant 1, the scaling functions Φ(A) and Φ(B) are respectively an
odd and an even function of y. This is the transcription in the finite-size scaling regime of the
phenomenon underlined when discussing (3.36) and (3.37). In particular, the first correction
term at small y is in y3 for Φ(A), and in y4 for Φ(B).
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Fig. 5 Plot of the non-trivial
zeros of the polynomials Fn(x)

for the BA model in the complex
x-plane. Symbols: zeros for
n = 50 in Case A (empty
symbols) and Case B (full
symbols). Line: limiting curve
with (3.51)

Let us again close up with the location of the complex zeros of the polynomials Fn(x).
Considering Case A for definiteness, the result (3.33) can be recast as the exact formula

F̂ (A)
n (u) − n − 1

n
F̂stat(u) = 1

n

∫

C

ds

i

s + 1

s + 2

Γ (n − s
2 − 1)

Γ (1 − s
2 )Γ (n − 1)

us

sinπs
. (3.49)

The growth of this expression with n for a fixed value of the complex variable u can be
investigated by means of the saddle-point approximation. The presence of gamma functions
again suggest to look for a saddle point ss proportional to n. Skipping details, let us mention
that we find ss ≈ 2n/(1 − u2), so that the right-hand side of (3.49) can be estimated as

F̂n,sing(u) ∼
(

1 − 1

u2

)−n

, (3.50)

with exponential accuracy. The asymptotic locus of the complex zeros is then naturally
given by the condition that the above estimate neither falls off nor grows exponentially. We
thus obtain

∣∣1 − 1/u2
∣∣ = 1. The relevant part of this locus can be parametrized by an angle

0 ≤ θ ≤ 2π as

u = (
1 − e−iθ

)−1/2
, x = 1

1 − (1 − e−iθ )1/2
. (3.51)

This closed curve in the x-plane has a cusp at the point x = 1, corresponding to the scaling
regime, with a right opening angle. We have indeed x − 1 ≈ (eiπ/2θ)1/2 as θ → 0. Figure 5
illustrates this result with data at time n = 50 for both initial conditions. The polynomials
Fn(x) converge to the stationary series Fstat(x) whenever the complex variable x lies within
the closed curve shown on the figure. Otherwise they diverge exponentially with n.

The exponential estimate (3.50) has another virtue. By inserting it into the contour-
integral representation (3.42), we obtain

fk(n) ∼
∮

du

2π i

(
u + 1

u

)k (
1 − 1

u2

)−n

. (3.52)
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This integral can in turn be investigated by means of the saddle-point approximation. The
result is the following large-deviation estimate

fk(n) ∼ exp(−nS(ζ )), (3.53)

where ζ = k/n, and where the large-deviation function S(ζ ) reads

S(ζ ) = (1 − ζ ) ln(1 − ζ ) − (2 − ζ ) ln
2 − ζ

2
. (3.54)

The formula (3.53) describes, with exponential accuracy, the degree distribution in the whole
large-deviation regime where k and n are comparable. The quadratic growth S(ζ ) ≈ ζ 2/4
at small ζ matches the fall-off of the finite-size scaling functions Φ(A)(y) ∼ Φ(B)(y) ∼
exp(−y2/4) (see (3.48)). The maximal value S(1) = ln 2 describes the fall-off fk(n) ∼ 2−n

of the probability of having a degree k equal to its maximal value (k = n or k = n − 1).

4 The General Preferential Attachment (GPA) Model

We now consider the general preferential attachment (GPA) rule, where the attachment prob-
ability to a node is proportional to the sum ki(n) + c of the degree of the earlier node and
of an additive constant c, representing the initial attractiveness of the node [11]. This at-
tachment rule interpolates between the uniform attachment rule, which is recovered in the
c → ∞ limit, and the BA model, which corresponds to c = 0. It can actually be contin-
ued on the other side of the BA model, as c can be chosen in the range −1 < c < ∞. The
GPA model thus defined is scalefree for any finite value of c, with the continuously varying
exponents γ = c + 3 and ν = 1/(c + 2).

The probability that node n connects to an earlier node i thus reads

pn,i = ki(n − 1) + c

Z(n − 1)
, (4.1)

where ki(n − 1) is the degree of node i at time n − 1, and the partition function in the
denominator,

Z(n) =
n∑

i=1

(ki(n) + c) = 2L(n) + cn (4.2)

(see (1.3)), ensures that the attachment probabilities add up to unity.
In the following we analyze the GPA model along the very lines of the previous section.

4.1 Degree Statistics of a Fixed Node

Let us again begin with the distribution fk(n, i) = Prob{ki(n) = k} of the degree of node i

at time n.
A first estimate of the degree ki(n) is provided by the product formula (3.3) for the mean

degree 〈ki(n)〉, which still holds in the present case. In the scaling regime where both i and
n are large, the latter relation becomes the differential equation

∂〈ki(n)〉
∂n

≈ 〈ki(n)〉 + c

(c + 2)n
, (4.3)
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which yields

〈ki(n)〉 ≈ (c + 1)
(n

i

)1/(c+2) − c. (4.4)

As anticipated, this expressions exhibits a power-law growth with exponent ν = 1/(c + 2)

in the range 0 < ν < 1.
The generating polynomials Fn,i(x) and Fn+1,i (x) associated with the degree of node i

at successive times n and n + 1 obey the recursion formula:

Fn+1,i (x) = 〈
xki (n+1)

〉 = 〈
xIi (n+1)xki (n)

〉

= 〈
(1 + (x − 1)pn+1,i )x

ki (n)
〉

=
〈(

1 + x − 1

Z(n)
(ki(n) + c)

)
xki (n)

〉
, (4.5)

i.e.,

Fn+1,i (x) = Fn,i(x) + x − 1

Z(n)

(
cFn,i(x) + x

dFn,i(x)

dx

)
, (4.6)

where

Z(A)(n) = (c + 2)n − 2, Z(B)(n) = (c + 2)n − 1. (4.7)

The probabilities fk(n, i) themselves therefore obey the recursion

fk(n + 1, i) = k + c − 1

Z(n)
fk−1(n, i) +

(
1 − k + c

Z(n)

)
fk(n, i), (4.8)

with initial conditions (2.12).
In order to solve the recursion (4.6), we again perform the change of variable (3.10) from

x to u, and set

Fn,i(x) = (1 − x)−cF̂n,i (u). (4.9)

The recursion (4.6) then reads

F̂n+1,i (u) = F̂n,i (u) − 1

Z(n)

(
cF̂n,i (u) + u

dF̂n,i (u)

du

)
. (4.10)

We then again introduce the Mellin transform Mn,i(s) of F̂n,i (u), so that the recursion (4.10)
simplifies to

Mn+1,i (s) =
(

1 − s + c

Z(n)

)
Mn,i(s), (4.11)

with initial condition Mi,i(s) = Xc(s) for i ≥ 2, with

Xc(s) =
∫ 1

0
x−s(1 − x)s+c−1dx = Γ (1 − s)Γ (s + c)

Γ (c + 1)
(4.12)
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for −c < Re s < 1. Hereafter the contour C is assumed to be in that strip. We thus get (i ≥ 2)

M
(A)
n,i (s) = Γ (n − s+c+2

c+2 )Γ (i − 2
c+2 )

Γ (i − s+c+2
c+2 )Γ (n − 2

c+2 )
Xc(s),

M
(B)
n,i (s) = Γ (n − s+c+1

c+2 )Γ (i − 1
c+2 )

Γ (i − s+c+1
c+2 )Γ (n − 1

c+2 )
Xc(s).

(4.13)

These product formulas are a generalization of (3.16). The mean and the variance of the
degree of node i at time n can be extracted from these results as follows. The identity (2.14)
now yields

F̂n,i (u) = 1

uc
− 〈ki(n)〉 + c

uc+1
+ 〈ki(n)2〉 + (2c + 1)〈ki(n)〉 + c(c + 1)

2uc+2
+ · · · (4.14)

as u → +∞. Furthermore the coefficients of this expansion are respectively the residues of
Mn,i(s) at s = −c, s = −c − 1 and s = −c − 2. We thus obtain

〈k(A)
i (n)〉 = (c + 1)

Γ (n − 1
c+2 )Γ (i − 2

c+2 )

Γ (i − 1
c+2 )Γ (n − 2

c+2 )
− c,

〈k(B)
i (n)〉 = (c + 1)

Γ (n)Γ (i − 1
c+2 )

Γ (i)Γ (n − 1
c+2 )

− c

(4.15)

and

vark(A)
i (n) = (c + 1)(c + 2)

Γ (n)Γ (i − 2
c+2 )

Γ (i)Γ (n − 2
c+2 )

− 〈k(A)
i (n)〉2 − (2c + 1)〈k(A)

i (n)〉 − c(c + 1),

vark(B)
i (n) = (c + 1)(c + 2)

Γ (n + 1
c+2 )Γ (i − 1

c+2 )

Γ (i + 1
c+2 )Γ (n − 1

c+2 )

− 〈
k

(B)
i (n)

〉2 − (2c + 1)
〈
k

(B)
i (n)

〉 − c(c + 1).

(4.16)

In the scaling regime where both times i and n are large and comparable, introducing the
time ratio z = n/i (see (2.16)), the above results yield

〈ki(n)〉 ≈ (c + 1)z1/(c+2) − c, var ki(n) ≈ (c + 1)z1/(c+2)(z1/(c+2) − 1), (4.17)

irrespective of the initial condition. The mean degree is in agreement with the estimate (4.4).
The entire degree distribution can actually be derived in the scaling regime. Equation (4.13)
indeed yields

Mn,i(s) ≈ z−(s+c)/(c+2)Xc(s). (4.18)

We thus obtain after some algebra

Fn,i(x) ≈ x
(
x + z1/(c+2)(1 − x)

)c+1 (4.19)
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and finally

fk(n, i) ≈ z−(c+1)/(c+2)
(
1 − z−1/(c+2)

)k−1 Γ (k + c)

Γ (k)Γ (c + 1)
. (4.20)

This result allows one to recover both the Poissonian law (2.22) in the c → ∞ limit and the
geometric one (3.23) as c = 0.

4.2 Degree Statistics of the Whole Network

We now turn to the degree distribution of the whole network at time n, fk(n) = Prob{k(n) =
k}, where k(n) stands for the degree of an unspecified node.

The generating polynomials Fn(x) obey the recursion

(n + 1)Fn+1(x) = nFn(x) + n(x − 1)

Z(n)

(
cFn(x) + x

dFn(x)

dx

)
+ x, (4.21)

where Z(n) is given by (4.7), and with initial conditions given in Table 1. The probabilities
fk(n) themselves obey the recursion

(n + 1)fk(n + 1) = k + c − 1

Z(n)
nfk−1(n) +

(
1 − k + c

Z(n)

)
nfk(n) + δk,1. (4.22)

The first generating polynomials which depend on the attachment rule read

F
(A)

3 (x) = 1

3
x(x + 2),

F
(B)

3 (x) = 1

3(2c + 3)
x

(
(c + 2)x2 + 2(c + 1)x + 3c + 5

)
,

F
(A)

4 (x) = 1

4(3c + 4)
x

(
(c + 2)x2 + 4(c + 1)x + 7c + 10

)
,

F
(B)

4 (x) = 1

4(2c + 3)(3c + 5)
x
(
(c + 2)(c + 3)x3 + 4(c + 1)(c + 2)x2

+ (c + 1)(7c + 11)x + (3c + 5)(4c + 7)
)
.

(4.23)

The stationary degree distribution fk,stat can be determined as the solution of (4.22) which
becomes independent of n for large n. We thus get

(k + 2c + 2)fk,stat = (k + c − 1)fk−1,stat + (c + 2)δk,1, (4.24)

hence [11, 14]

fk,stat = (c + 2)Γ (2c + 3)Γ (k + c)

Γ (c + 1)Γ (k + 2c + 3)
. (4.25)

This result has a power-law decay at large k:

fk,stat ≈ (c + 2)Γ (2c + 3)

Γ (c + 1)
k−(c+3). (4.26)
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An alternative approach consists in looking for the generating function Fstat(x) as the sta-
tionary solution of (4.21). We thus obtain the differential equation

x(1 − x)F ′
stat(x) + (2c + 2 − cx)Fstat(x) = (c + 2)x, (4.27)

which is equivalent to (4.24). The solution

Fstat(x) = (c + 2)(1 − x)c+2

x2c+2

∫ x

0

y2c+2

(1 − y)c+3
dy (4.28)

can be recast in terms of a hypergeometric function, which boils down to elementary func-
tions whenever 2c is an integer.

Throughout the regime where the degree k and the parameter c are both large and com-
parable, the expression (4.25) assumes a stationary large-deviation form,

fk,stat ∼ exp(−cφ(κ)), (4.29)

where κ = k/c, and with

φ(κ) = (κ + 2) ln(κ + 2) − (κ + 1) ln(κ + 1) − 2 ln 2. (4.30)

The linear behavior φ(κ) ≈ κ ln 2 as κ → 0 matches the exponential decay (2.29) of the
stationary distribution in the UA model, formally corresponding to c → ∞, whereas the
logarithmic growth φ(κ) ≈ lnκ + 1 − 2 ln 2 as κ → ∞ matches the power-law decay (4.26).

The moments of the stationary distribution,

mp =
∑

k≥1

kpfk,stat, (4.31)

can be derived from (4.24), which yields the recursion

(c + 2 − p)mp = c + 2 + pcmp−1 +
p−2∑

q=0

(
p

q

)
(mq+1 + cmq). (4.32)

We thus get

m0 = 1, m1 = 2, m2 = 2(3c + 2)

c
,

m3 = 2(13c2 + 17c + 6)

c(c − 1)
, m4 = 2(3c + 2)(25c2 + 33c + 14)

c(c − 1)(c − 2)
,

(4.33)

and so on. The power-law decay (4.26) implies that the moment mp is convergent for c >

p − 2.
The recursion (4.21) for the generating polynomials Fn(x) can again be exactly solved

for a finite time n. The Mellin transforms Mn(s) of the functions F̂n(u) = (1 − x)cFn(x)

obey

(n + 1)Mn+1(s) =
(

1 − s + c

Z(n)

)
nMn(s) + Xc(s), (4.34)
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with initial condition M
(A)

2 (s) = M
(B)

1 (s) = Xc(s). Equation (4.34) has a special solution

Mn(s) = Z(n)Xc(s)

(s + 2c + 2)n
, (4.35)

whereas the general solution of the homogeneous equation shares the n-dependence of the
expressions (4.13). We thus get

M(A)
n (s) = Xc(s)

(s + 2c + 2)n

×
(

(c + 2)n − 2 + 2(s + c + 1)
Γ (n − s+c+2

c+2 )Γ ( 2c+2
c+2 )

Γ (1 − s
c+2 )Γ (n − 2

c+2 )

)
,

M(B)
n (s) = Xc(s)

(s + 2c + 2)n

×
(

(c + 2)n − 1 + (s + c + 1)
Γ (n − s+c+1

c+2 )Γ ( c+1
c+2 )

Γ ( 1−s
c+2 )Γ (n − 1

c+2 )

)
.

(4.36)

In order to illustrate these general results, let us again consider the probability f1(n) for a
node to have degree one. This probability is minus the residue of Mn(s) at s = 1. For Case A
we obtain (n ≥ 2)

f
(A)

1 (n) = 1

(2c + 3)n

(
(c + 2)n − 2 + 2(c + 2)

Γ (n − c+3
c+2 )Γ ( 2c+2

c+2 )

Γ ( c+1
c+2 )Γ (n − 2

c+2 )

)

= 1

2c + 3

(
c + 2 − 2

n
+ 2(c + 2)Γ ( 2c+2

c+2 )

Γ ( c+1
c+2 )

n− 2c+3
c+2 + · · ·

)
, (4.37)

whereas for Case B we obtain (n ≥ 2)

f
(B)

1 (n) = (c + 2)n − 1

(2c + 3)n
. (4.38)

This rational expression for f
(B)

1 (n) is however an exception. The probabilities fk(n) indeed
generically have a singular correction in n−(2c+3)/(c+2) for both initial conditions, whereas
only f

(B)

1 (n) and f
(B)

2 (n) are rational functions of time n.
We now turn to the finite-size scaling behavior of the degree distribution when both k

and n are large. The crossover scale k�(n) can again be estimated either using (4.4) or by the
argument of extreme value statistics. Both approaches consistently yield

k�(n) ∼ n1/(c+2). (4.39)

The degree distribution obeys a finite-size scaling law of the form

fk(n) ≈ fk,statΦ(y), y = k

n1/(c+2)
, (4.40)

where the scaling function Φ(y) again depends on the initial condition [16, 17]. The deter-
mination of the scaling functions Φ(A)(y) and Φ(B)(y) closely follows the steps of Sect. 3.2.
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We thus obtain

Φ(A)(y) = 1 + 2Γ ( 2c+2
c+2 )

(c + 2)Γ (2c + 3)

∫

C

ds

2π i

s + c + 1

s + 2c + 2

Γ (1 − s)

Γ (1 − s
c+2 )

ys+2c+2,

Φ(B)(y) = 1 + Γ ( c+1
c+2 )

(c + 2)Γ (2c + 3)

∫

C

ds

2π i

s + c + 1

s + 2c + 2

Γ (1 − s)

Γ ( 1−s
c+2 )

ys+2c+2.

(4.41)

By closing the contours to the right, we can derive the following convergent series:

Φ(A)(y) = 1 + 2Γ ( 2c+2
c+2 )

(c + 2)Γ (2c + 3)
y2c+3

∑

m≥0

(m + c + 2)(−y)m

(m + 2c + 3)m!Γ (1 − m+1
c+2 )

,

Φ(B)(y) = 1 + Γ ( c+1
c+2 )

(c + 2)Γ (2c + 3)
y2c+3

∑

m≥1

(m + c + 2)(−y)m

(m + 2c + 3)m!Γ (− m
c+2 )

.

(4.42)

The above expression for Φ(A) can be found in [17], albeit not in a fully explicit form. It
is also worth mentioning that the finite-size scaling function derived in [20] for asymmetric
growing networks is different from the above one for generic values of the exponent ν =
1/(c + 2), although it coincides for ν = 1/2 with our result (3.47) for Φ(A).

The expressions (4.42) suggest that the derivatives Φ(A)′(y) and Φ(B)′(y) are somewhat
simpler than the functions themselves. The factor (m + 2c + 3) is indeed chased away from
the denominators under differentiation. The resulting series can be resummed by means of
the identities

∑

m≥0

(−y)m

m!Γ (1 − m+1
c+2 )

= (c + 2)

∫

C

dz

2π i
e−yz+zc+2

,

∑

m≥1

(−y)m

m!Γ (− m
c+2 )

= y

∫

C

dz

2π i
e−yz+zc+2

,

(4.43)

which are known e.g. in the theory of Lévy stable laws. We are thus left with the following
alternative contour-integral expressions for the derivatives:

Φ(A)′(y) = 2Γ ( 2c+2
c+2 )

Γ (2c + 3)
y2c+2

∫

C

dz

2π i
(c + 2 − yz)e−yz+zc+2

,

Φ(B)′(y) = Γ ( c+1
c+2 )

(c + 2)Γ (2c + 3)
y2c+3

∫

C

dz

2π i
(c + 3 − yz)e−yz+zc+2

.

(4.44)

Both scaling functions start increasing from the value 1 according to the power laws

Φ(A)(y) = 1 + 2Γ ( 2c+2
c+2 )

Γ (2c + 4)Γ ( c+1
c+2 )

y2c+3 + · · · ,

Φ(B)(y) = 1 + (c + 3)

2(c + 2)3Γ (2c + 3)
y2c+4 + · · · ,

(4.45)

go through a maximum, and fall off superexponentially as

Φ(A)(y) ≈ 2(c + 2)CΓ

(
2c + 2

c + 2

)
Ψ (y), Φ(B)(y) ≈ CΓ

(
c + 1

c + 2

)
yΨ (y), (4.46)
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Fig. 6 Plot of the scaling
functions Φ(A)(y) (full lines) and
Φ(B)(y) (dashed lines) against y,
for (1) c = −1/2, i.e., ν = 2/3;
(2) c = 0, i.e., ν = 1/2 (the BA
model); and (3) c = 1, i.e.,
ν = 1/3

with

Ψ (y) = y
2c+3− c

2(c+1) exp

(
−(c + 1)

(
y

c + 2

) c+2
c+1

)
(4.47)

and

C =
[
(2π(c + 1))1/2(c + 2)

2c+3
2(c+1) Γ (2c + 3)

]−1
. (4.48)

Figure 6 shows a plot of the scaling functions Φ(A)(y) and Φ(B)(y) for (1) c = −1/2,
i.e., ν = 2/3; (2) c = 0, i.e., ν = 1/2 (the BA model); and (3) c = 1, i.e., ν = 1/3. The figure
demonstrates that the scaling functions present a high and narrow maximum for the smaller
values of c, and a direct crossover from 1 to 0 for the larger values of c. These observations
can be made quantitative by means of the pseudo-moments

μp = −
∫ ∞

0
Φ ′(y)ypdy = p

∫ ∞

0
Φ(y)yp−1dy. (4.49)

The integral formulas (4.44) allow one to evaluate these quantities explicitly:

μ(A)
p = (p + c + 1)Γ ( 3c+4

c+2 )Γ (p + 2c + 3)

(c + 1)Γ (
p+3c+4

c+2 )Γ (2c + 3)
,

μ(B)
p = Γ ( c+1

c+2 )Γ (p + 2c + 3)

Γ (
p+c+1

c+2 )Γ (2c + 3)
.

(4.50)

• For large values of c (i.e., c → ∞), the model is close to the UA model. The analysis
of the scaling functions will follow that of the ratios Rk(n) in the UA model, performed
in Sect. 2.2. The crossover value of y, at which the functions exhibit a relatively sharp
crossover from 1 to 0, can be estimated as μ1, i.e.,

μ
(A)

1 = 2c + 2γE + 2 + · · · , μ
(B)

1 = 2c + 2γE + 3 + · · · , (4.51)
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which grows as 2c, irrespective of the initial condition. Similarly, the squared width of
the crossover region can be estimated as the pseudo-variance σ 2 = μ2 − μ2

1, i.e.,

σ 2(A) = 2c + 4γE + 2 − 2π2/3 + · · · , σ 2(B) = 2c + 4γE + 3 − 2π2/3 + · · · , (4.52)

which also grows as 2c, irrespective of the initial condition.
• For small values of c (i.e., c → −1), the scaling functions exhibit a high and narrow peak

around y = 1. The position of the peak can be estimated as 〈y〉 = μ2/(2μ1), i.e., setting
c = −1 + ε,

〈y〉(A) = 1 + (3/2 − γE)ε + · · · , 〈y〉(B) = 1 + (2 − γE)ε + · · · , (4.53)

whereas the squared width of the peak can be estimated as vary = (4μ1μ3 −3μ2
2)/(12μ2

1),
i.e.,

vary(A) = 5

6
ε + 19 − 10γE − π2

6
ε2 + · · · ,

vary(B) = 2

3
ε + 22 − 8γE − π2

6
ε2 + · · · ,

(4.54)

and finally the area under the peak scales as μ1, i.e.,

μ
(A)

1 = 1

ε
+ 2 − γE + · · · , μ

(B)

1 = 1

ε
+ 3 − γE + · · · . (4.55)

We are thus left with the picture of a narrow peak around y = 1, whose width shrinks as
ε1/2 and whose height grows as ε−3/2.

Let us close up this section with the location of the complex zeros of the polynomials
Fn(x). The derivation of the estimate (3.50) can be generalized to the present situation for
arbitrary values of c. We are thus left with

F̂n,sing(u) ∼
(

1 − 1

(−u)c+2

)−n

, (4.56)

again with exponential accuracy. The asymptotic locus of the complex zeros is therefore
given by the condition

∣∣1 − 1/(−u)c+2
∣∣ = 1. The relevant part of this locus can be parame-

trized by an angle 0 ≤ θ ≤ 2π as

u = (
1 − e−iθ

)−1/(c+2)
, x = 1

1 − (1 − e−iθ )1/(c+2)
. (4.57)

This closed curve in the x-plane has a cusp at the point x = 1, corresponding to the scaling
regime, with an opening angle equal to π/(c + 2). We have indeed x − 1 ≈ (eiπ/2θ)1/(c+2)

as θ → 0. Figure 7 illustrates this result with data at time n = 50 for three values of c and
both initial conditions.

The exponential estimate (4.56) can again be recast into a large-deviation estimate for
the probabilities fk(n) in the regime k ∼ n, of the form

fk(n) ∼ exp(−nS(ζ )), (4.58)
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Fig. 7 Plot of the non-trivial
zeros of the polynomials Fn(x)

in the complex x-plane. Symbols:
zeros for n = 50 in Case A
(empty symbols) and Case B (full
symbols). Lines: limiting curves
with (4.57). From the inside to
the outside: c = 0 (the BA model,
already shown in Fig. 5), c = 1
and c = 2

with ζ = k/n. The large-deviation function S(ζ ) is obtained in parametric form:

ζ = (c + 2)(v − 1)

vc+2 − 1
,

S = ln(vc+2 − 1) − c + 2

vc+2 − 1

(
(v − 1) ln(v − 1) + (vc+1 − 1)v lnv

)
,

(4.59)

where the parameter v in the range 1 < v < ∞ is the opposite of the saddle-point value of u

in the contour integral generalizing (3.52).
The power-law behavior

S(ζ ) ≈ (c + 1)

(
ζ

c + 2

) c+2
c+1

(4.60)

at small ζ (corresponding to v → ∞) exactly matches the superexponential decay (4.46),
(4.47) of the finite-size scaling functions Φ(A)(y) and Φ(B)(y). The maximal value

S(1) = ln(c + 2), (4.61)

corresponding to v → 1, describes the exponential decay fk(n) ∼ (c + 2)−n of the probabil-
ity of having a degree k equal to its maximal value (k = n or k = n − 1).

5 Discussion

We have presented a comprehensive investigation of finite-size (i.e., finite-time) effects on
the degree statistics in growing networks. Finite-size and related cutoff effects have already
been studied by several authors, both for growing networks [11–18] and for related mod-
els [19, 20]. At variance with these earlier works, the present one is systematic in several
respects. Three different attachment rules (UA, BA, GPA) have been dealt with on the same
footing. For each model, both the age-resolved distribution of the degree of node i at a
later time n and the distribution of an unspecified node at time n have been investigated.



Finite-Time Fluctuations in the Degree Statistics of Growing Networks 1145

Two different initial conditions (Cases A and B) have been systematically considered. The
dependence (or the lack of dependence) of various quantities with respect to the initial con-
dition has been underlined. The same tools have been employed for each of the models,
whenever possible. Finally, the most novel feature of this unified approach is the central part
played by the generating polynomials Fn(x).

The models considered in this work are defined by stochastic attachment rules. We have
investigated the uniform attachment rule (UA), the linear attachment rule of the Barabási-
Albert (BA) model, and a general preferential attachment rule (GPA) characterized by a
continuous parameter c > −1. The UA and BA models are recovered as two special cases,
respectively corresponding to c → ∞ and c = 0. The continuous dependence of exponents
on the parameter c, and the dependence of finite-size scaling functions on the initial con-
dition, are two illustrations of the lack of universality which altogether characterizes the
scaling behavior of growing networks.

The GPA rule is the most general one for which the partition function Z(n) is determinis-
tic, i.e., independent of the history of the network. Whenever the attachment probability has
a non-linear dependence on the degree k, the partition function becomes a history-dependent
fluctuating quantity, so that the analysis of size effects becomes far more difficult. The gen-
eral case of an arbitrary attachment rule, growing either less or more rapidly than linearly
with the degree, has been considered in several works [14, 15, 18]. Whenever the degree
dependence of the attachment rule is asymptotically linear, the resulting network is generi-
cally scalefree. The determination of the degree exponent γ is however non-trivial in general
(see [14, 15] for an explicit example).

This study has underlined the key rôle played by the typical largest degree k�(n) on
a finite network at time n. In the UA model, k�(n) grows logarithmically with time n. The
situation is more interesting in the scalefree case. The largest degree k�(n) grows as a subex-
tensive power law with exponent ν, and demarcates three regimes in the size-degree plane,
where finite-size (i.e., finite-time) effects on the degree distribution fk(n) have different
forms.

– In the stationary regime (k � k�(n)), the degree distribution is very close to the stationary
one, fk,stat.

– In the finite-size scaling regime (k ∼ k�(n)), the degree distribution obeys a multiplicative
finite-size scaling law. As already noticed in several earlier works [13, 16, 17], the finite-
size scaling function Φ depends on the initial condition imposed on the network. This
lack of universality holds for all finite values of the parameter c. Another feature of the
finite-size scaling function is that it increases from its initial value Φ(0) = 1, reaches a
maximum, and stays above unity for a range of values of its argument y = k/k�(n), before
it eventually falls off to zero. This non-monotonic overshooting behavior is however not
mandatory. In this respect it is worth recalling the example of the zeta urn model [22–
24]. This mean-field interacting particle system with multiple occupancies possesses a
continuous condensation transition at a finite critical density. Its behavior right at the
critical density shares a high amount of similarity with the present problem, including a
power-law stationary distribution with a continuously varying exponent, and finite-time
scaling. The same results have been shown to apply to the dynamics of condensation in
the zero-range process (ZRP) [25]. In the critical zeta urn and ZRP models, the finite-size
scaling function is a monotonically decreasing function, so that Φ(y) < 1 for all y > 0.
This does not contradict the conservation of probability: the excess probability is carried
by smaller values of k, pertaining to the stationary regime.

– In the large-deviation regime (k�(n) � k ∼ n), the degree distribution falls off exponen-
tially in n. At variance with the finite-size scaling law, the corresponding large-deviation
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function is independent of the initial condition. The analysis of this regime has been
shown to be closely related to the locus of the complex zeros of the generating polynomi-
als Fn(x), which have played a central rôle throughout this work.

To close up, it is to be hoped that some of the concepts and methods used in the present
work can be used to shed some new light either to other observables in the network mod-
els considered here, such as e.g. the statistics of leaders and lead changes [21], or to the
degree statistics in more complex network models, such as e.g. the Bianconi-Barabási (BB)
model [26, 27], where attachment rules involve the competing effects of dynamical variables
(the node degrees) and quenched disordered ones (the node fitnesses). Depending on the a
priori distribution of the random fitnesses, the BB model may possess a low-temperature
condensed phase. Some features of the dynamics of the condensed phase have been inves-
tigated recently, both at zero temperature [28], where the model is intimately related to the
statistics of records, and at finite temperature [29].
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